skip to main content


Search for: All records

Creators/Authors contains: "Davidson, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Nutrients, such as nitrogen and phosphorus, provide vital support for human life, but overloading nutrients to the Earth system leads to environmental concerns, such as water and air pollution on local scales and climate change on the global scale. With an urgent need to feed the world's growing population and the growing concern over nutrient pollution and climate change, sustainable nutrient management has become a major challenge for this century. To address this challenge, the growing body of research on nutrient budgets, namely the nutrient inputs and outputs of a given system, has provided great opportunities for improving scientific knowledge of the complex nutrient cycles in the coupled human and natural systems. This knowledge can help inform stakeholders, such as farmers, consumers, and policy makers, on their decisions related to nutrient management. This paper systematically reviews major challenges, as well as opportunities, in defining, quantifying, and applying nutrient budgets. Nutrient budgets have been defined for various systems with different research or application purposes, but the lack of consistency in the system definition and its budget terms has hindered intercomparison among studies and experience‐sharing among researchers and regions. Our review synthesizes existing nutrient budgets under a framework with five systems (i.e.,Soil‐Plantsystem,Animalsystem,Animal‐Plant‐Soilsystem,Agro‐Foodsystem, andLandscapesystem) and four spatial scales (i.e., Plot and Farm, Watershed, National, and Global scales). We define these systems and identify issues of nitrogen and phosphorus budgets within each. Few nutrient budgets have been well balanced at any scale, due to the large uncertainties in the quantification of several major budget terms. The type and level of challenges vary across spatial scales and also differ among nutrients. Improvement in nutrient budgets will rely not only on the technological advancement of scientific observations and models but also on better bookkeeping of human activity data. While some nutrient budget terms may need decades, or even centuries, of research to be well quantified within desirable levels of uncertainties, it is imperative to effectively communicate to interested stakeholders our understanding of nutrient budgets so that scientists and a variety of stakeholders can work together to address the sustainable nutrient management challenge of this century.

     
    more » « less
  4. Abstract

    We synthesized N2O emissions over North America using 17 bottom‐up (BU) estimates from 1980–2016 and five top‐down (TD) estimates from 1998 to 2016. The BU‐based total emission shows a slight increase owing to U.S. agriculture, while no consistent trend is shown in TD estimates. During 2007–2016, North American N2O emissions are estimated at 1.7 (1.0–3.0) Tg N yr−1(BU) and 1.3 (0.9–1.5) Tg N yr−1(TD). Anthropogenic emissions were twice as large as natural fluxes from soil and water. Direct agricultural and industrial activities accounted for 68% of total anthropogenic emissions, 71% of which was contributed by the U.S. Our estimates of U.S. agricultural emissions are comparable to the EPA greenhouse gas (GHG) inventory, which includes estimates from IPCC tier 1 (emission factor) and tier 3 (process‐based modeling) approaches. Conversely, our estimated agricultural emissions for Canada and Mexico are twice as large as the respective national GHG inventories.

     
    more » « less